x
L O A D I N G

太阳能发电吸热温度

BSNERGY:
下一代太阳能光热发电储热技术新进展
具有热能储存 (TES,以下简称储热) 的太阳能光热发电(concentrated solar power, CSP)技术是 未来可再生能源系统中最高具应用前景的发电技术之一,其可高效利用资源丰富但具间歇性的太阳能,为人们提供稳定可调度且低成本的电力。根据国际知名
BSNERGY:
塔式熔盐太阳能光热发电技术
太阳能光热技术特指聚焦式光热发电技术(concentrating solar power,CSP),即通过反射镜将太阳光汇集,直接或间接产生高品质蒸汽,并推动动力系统做功发电。
BSNERGY:
太阳能光伏/光热技术研究现状与发展趋势综述
太阳能光伏/光热(photovoltaic/thermal,PV/T)技术是光伏组件和太阳能集热器的集成,可同时发电和提供热能,在提高系统整体效率的同时提高了空间利用率。
BSNERGY:
中国电建西北院:塔式光热电站吸热器技术发展
通过对实际气象条件下的动静态仿真,分析了太阳法向直射辐照度扰动下吸热器出口熔盐温度、表面最高高温度、散热功率的过渡过程响应时间对吸热管轴向温度梯度的影响,并利用外露管式吸热器特性参数与太阳法向直射辐照度和熔盐流量三者间的定量关系
BSNERGY:
中国科学院电工研究所王志峰:太阳能热发电技术及其产业化进展
第一名代为导热油和水作为工质的太阳能热发电技术,其吸热器运行温度在230℃-430℃范围。 导热油工质主要用在槽式太阳能热发电系统中,最高高运行温度为400℃,超过该温度后导热油会发生分解。 由于热机效率随温度升高而提高,因此这种技术的由于最高高温度400℃的限制,导致太阳能热发电效率较低。
BSNERGY:
西安交大何雅玲团队:聚光太阳能热发电技术前景展望
因此,针对太阳能热发电系统特点,有针对性地构建高效率、大比功和宽温差的新型S-CO 2 循环型式,或提出S-CO 2 循环与相变蓄热、热化学蓄热等先进的技术蓄热方式的创新集成方法,是促进S-CO 2 太阳能热发电技术发展的有效方法。
BSNERGY:
中国电建西北院:塔式光热电站吸热器技术发展
通过对实际气象条件下的动静态仿真,分析了太阳法向直射辐照度扰动下吸热器出口熔盐温度、表面最高高温度、散热功率的过渡过程响应时间对吸热管轴向温度梯度的影响,并利用外露管式吸热器特性参数与太阳法向直射辐照度和熔盐流量三者间的定量
BSNERGY:
塔式太阳能热发电吸热器热效率影响因素分析
对塔式太阳能热发电吸热器表面的热流特性进行分析,并通过热流平衡关系式得出吸热器热效率的公式,研究了吸热器的发射率、吸收率、风速、环境温度等因素对吸热器热效率的影响;同时对不同聚光比、不同吸热器温度条件下系统的热电综合效率进行了研究
BSNERGY:
太阳能光热发电技术及其发展综述
摘要:. 在"双碳"目标下,新能源迎来新的、跨越式发展对电力系统灵活性提出更高要求。光热发电拥有与常规火电机组相媲美的调节特性,可快速深度参与电网调峰调频,提升电力系统灵活性,是极具发展前景的可再生能源发电技术。介绍了光热发电技术
BSNERGY:
太阳能光热发电技术及其发展综述
太阳能热发电(Concentrating Solar Power, CSP)的基本原理是通过大量反射镜或聚光镜将电站周围的太阳辐射能聚焦于集热区,集热区加热工质吸收太阳辐射能产生高温蒸汽,驱动汽轮发电机组发电,从而将太阳能转化为电能。 光热发电站一般由集热系统、储热系统、蒸汽产生系统及发电装置组成,如图 1 所示。 图1 光热发电系统组成示意. Fig. 1 Composition